D2iQ Unveils KUDO for Kubeflow to Accelerate Enterprise-Grade Machine Learning on Kubernetes
KUDO for Kubeflow automates provisioning and management of machine learning workflows at scale, reducing costs while meeting security requirements
D2iQ, the leading provider of enterprise-grade cloud platforms that power smarter Day 2 operations, introduced KUDO for Kubeflow to simplify and accelerate machine learning (ML) deployments on Kubernetes. An enterprise-ready distribution of open source Kubeflow, D2iQ KUDO for Kubeflow accelerates time-to-market for ML workflows by reducing the complexity of provisioning and managing all of the moving pieces. Bundled with other ML tools such as Spark and Horovod, KUDO for Kubeflow delivers an end-to-end secure, scalable and portable ML platform that empowers data scientists and ML engineers to more quickly and consistently build, deploy and run workflows in Day 2 operations.
A recent Forrester Research study found that 76 percent of data scientists and IT practitioners expect their ML use to increase in the next 18 to 24 months, making machine learning an essential skill in almost every organization. This increased demand is forcing data scientists to navigate a complex myriad of toolkits, technologies and platforms to meet the evolving business needs of their organization. However, each technology often requires varying skill sets, slowing projects and leading to challenges when effectively deploying ML workflows to run in production environments.
Recommended AI News: How Precise Location Based Advertising Is The Future Of Mobile Marketing
KUDO for Kubeflow empowers organizations with a platform that provides standardized best practices and tools for running machine learning on Kubernetes. By removing the complexity of setting up ML development and production environments, KUDO for Kubeflow enables organizations to improve the productivity of data science teams at a much lower cost. Data scientists can leverage GPUs and MLOps to speed up the process of training, tuning and deploying models, regardless of the underlying infrastructure, reducing the costs and risks associated with manual setups. ML engineers can now deploy and train ML models at scale, all on a single platform.
Recommended AI News: Catalyst Blockchain Platform From IntellectEU Makes Blockchain Technology Easier To Use Than Ever
“Taking ML workflows from development to production is filled with challenges, as discrepancies between the environments, monolithic architectures, and lack of portability and scalability are common when trying to deploy a model into production,” said Chandler Hoisington, SVP Engineering and Product, D2iQ. “D2iQ KUDO for Kubeflow enables organizations to develop, deploy, and run entire ML workloads in production at scale, while satisfying security and compliance requirements. This enables data scientists and ML engineers to run their entire ML stack with much higher velocity on Kubernetes infrastructure.”
Recommended AI News: Embrace Serverless IoT/ AI Workloads: Hasura GraphQL Goes Server-Less With New Cloud Launch
Comments are closed, but trackbacks and pingbacks are open.