New CytoReason Machine Learning Model Turns Mice into Men (And Women) to Overcome the Barrier of Cross-Species Differences in Drug Development, Published in Nature Methods
Groundbreaking Model Translates the Results of New Mouse Experiments into the Equivalent Human Condition, Outperforming Traditional Methods of Extrapolation by up to 50%. This Could Lead to Reductions in Post-Mice Human Trial Failures and Provides Further Supporting Data for IND Submissions. Leveraging Existing Mouse and Human Gene Expression Data, the New Approach Demonstrates Its Ability to Uncover Novel Disease-Related Genes, Providing New Disease Understanding and New Targets for Drug Discovery.
CytoReason, developer of the world’s first machine learning platform for human immune system cell-level simulation, announces publication of a groundbreaking new model for translating data from mouse models to human disease. Described in Nature Methods, the mouse to human model (Found In Translation or FIT), proved its ability to more accurately and effectively extrapolate results from the mouse-based research that is a vital, and necessary, part of every drug discovery and development program.
This groundbreaking mouse to human machine learning model changes the entire dynamic in making the right decisions for the next steps in a given drug development program – doing mouse-kind and mankind a major service in the fight against disease
Much of what we know about disease is rooted in research done using mouse models (mice bred specifically to have the characteristics of the disease being studied). Furthermore, every single new drug will have first had to demonstrate some level of safety and efficacy on mice. But mice are not humans, and cross-species differences have consistently been a major stumbling block to translating lab-based research into something that will be meaningful for patients and clinicians.
Read More: Sixgill Backstops Security with Blockchain Data Integrity for IoE Applications
Until now, knowledge of species differences has not been systematically incorporated into the interpretation of animal models. In trying to overcome this huge issue, scientists from CytoReason and the Systems Immunology and Precision Medicine Lab at the Technion Faculty of Medicine, developed their mouse to human model. This new model builds on CytoReason’s mission of driving biological insights that transform drug discovery and development, lifting analysis of datasets out of an isolated vacuum and applying the full context of existing knowledge, in a similar way to CytoReason’s Cell-Centered Models of the immune system do in terms of identifying and understanding gene/cell/cytokine relationships.
Tested on mouse models of 28 different human diseases, the mouse to human model outperformed direct cross-species extrapolation from mouse results, increasing the overlap of differentially expressed genes by 20–50% in pre-identifiable disease conditions. It uncovered novel disease-associated genes, highlighted signals that may otherwise have been missed and reduced false leads, with no experimental cost.
Read More: Arthur D. Little Predicts Transformative Changes in Commercial Aviation Market by 2035
“This is a massive advance. Mice models are a necessary but flawed method of trying to understand what might happen in a human in any given situation,” said Prof. Shai Shen-Orr, Head of the Systems Immunology & Precision Medicine Lab, Technion Faculty of Medicine and Chief Scientist at CytoReason. “We have shown that we can significantly increase the accuracy of what we learn from these models. This changes the entire dynamic in terms of confidence in making the right decisions for the next steps in a given drug development program – doing mouse-kind and mankind a major service in the fight against disease.”
“The mouse to human model clearly demonstrated its ability to uncover novel disease-associated genes. It predicted a role for Interleukin Enhancer Binding Factor 3 (ILF3) in the colon of Inflammatory Bowel Disease (IBD) patients compared to healthy people, even though ILF3 was not seen in either IBD mouse model or human datasets,” said Rachelly Normand, lead author of the Nature Methods paper from the Department of Immunology, Faculty of Medicine, Technion. “We also didn’t see any ILF3 associated to IBD in any past research. We did, however, see a significant increase in ILF3 in the colons of IBD patients versus healthy patients in laboratory tests, validating this as a real and novel finding of great significance.”
Read More: Atlas Protocol Joins IAB Tech Lab Blockchain Working Group
At the heart of the process is the pairing of human and mouse model datasets with a human-disease dataset of comparable conditions to produce cross-species pairings. For each cross-species pairing in each species the difference was calculated between disease and control samples, which was then used to study how different human and mouse genes express under similar conditions and fed into the mouse to human model.
“This is a real breakthrough. Many drugs that appear to be effective in mice go on to fail in clinical development. This technology, part of our growing portfolio of translation capabilities, will help bridge the gap between pre-clinical results and clinical outcomes,” said David Harel, CytoReason’s CEO. “It is a demonstration of the power of our growing and rich data sets, feeding our proprietary machine learning technologies and unique methodologies, to more accurately understand context. This enables the transference of understanding from one element of research to another, in order to improve overall drug development and clinical outcomes.”
Read More: Fastly’s Global Momentum Continues as Today’s Most Important Brands Adopt Edge Computing at Scale
Copper scrap yard Copper scrap packaging Scrap metal trading
Copper cable scrap export requirements, Metal waste grading, Scrap copper buyer
Scrap Copper industry Copper scrap value Scrap metal reclamation processing
Copper cable scrap recycling, Scrap metal decommissioning, Copper scrap yards
Metal waste recovery yard Ferrous material recovery Iron recycling and reclamation
Ferrous material recycling stakeholder engagement, Iron waste reclamation facility, Scrap metal compaction