Hewlett Packard Enterprise Advances the Global Food System Through Memory-Driven Computing With CGIAR
Hewlett Packard Enterprise announced a collaboration with global research partnership the CGIAR System Organization (CGIAR) to uncover insights about food security challenges, now intensified due to COVID-19. By applying HPE’s Memory-Driven Computing Sandbox to CGIAR’s data sets, HPE will help CGIAR accelerate solutions to these global challenges by enabling modeling of food systems.
One of the most pressing challenges facing the world today is ensuring a sustainable global food supply. Nearly 800 million people are chronically undernourished and 2 billion are micronutrient deficient, while the number of smaller farms, globally, is on the decline because profitability is so difficult. In short order, these problems will significantly worsen as the United Nations (UN) forecasts the world’s population will grow to 8.5 billion by 2030, and the World Economic Forum predicts a population of 9.8 billion by 2050, requiring 70 percent more food than is consumed today.
Recommended AI News: Falcon Insurance Company Chooses Shift Technology For Fraud Detection
The problem has only worsened in light of the global COVID-19 pandemic. The crisis is affecting food systems and supply chains worldwide, but it is unfolding differently around the world, which means the problems cannot be solved with one universal solution.
CGIAR is a global research partnership of 14 non-profit agricultural research institutes working in over 100 countries on research into virtually every aspect of food security. In its 11 genebanks around the world, CGIAR preserves and regenerates 760,000 varieties of food crops that represent important genetic diversity available for building resilience in the global food supply.
Insights from this data help researchers answer questions like:
- How is economic activity and food movement happening in food baskets on a weekly basis?
- How can these analytics guide the agriculture sector and its most vulnerable participants in a period of increasing climate variability and extreme weather events?
- How can public, private, and non-profit actors meaningfully share all of this data to enable better outcomes for all?
- How can stakeholders track and measure progress toward the UN’s Sustainable Development Goals for zero hunger by 2030?
Answers to questions like these help CGIAR detect and predict food security challenges and guide collective action to solve them.
Recommended AI News: VIAVI Launches Comprehensive VPN Management Solution For Large To Medium Enterprises
“Being able to create a picture in 200 cities or settlements in a short amount of time is dramatically different from what we can do with our existing compute resources,” said Brian King, coordinator of CGIAR’s Platform for Big Data in Agriculture. “Since the impacts of COVID-19 are unfolding differently by country, our ability to look at the situation both at the aggregate level and from an on-the-ground, local view is incredibly valuable. That capability enables a different way for us to operate as a research organization. But generating high-frequency insights across multiple distinct contexts at once demands compute power to support it and more compute capacity than we had. The Memory-Driven Computing Sandbox appeared at just the right time.”
While CGIAR has high-performance computing clusters at several of its Centers, it is seeing increased need to develop timely, localized information and analysis across an array of food security contexts in light of the pandemic, and this is beyond its existing compute resources. The Memory-Driven Computing Sandbox sets itself apart by giving every processor (up to 64 sockets) in the system access to a giant shared pool of memory – up to 48 terabytes – which is a sharp departure from today’s systems. Typically, relatively small amounts of memory – just a few terabytes – are tethered to each processor; the resulting inefficiencies limit performance. By having all of the massive, diverse data sets available at one time in memory, users can clear computational bottlenecks that hinder research and discovery.
Recommended AI News: CenturyLink Helps Fuel Kid’s Bodies And Minds During Uncertain Times
With access to the Sandbox – so named for the controlled environment it offers customers to experiment with advanced compute resources – CGIAR is building cross-cutting, high-frequency views of food systems linking crop modeling – including weather records and how crops performed and what the yield was, by year and location – survey data, and overall economic activity (e.g. movement of goods and people). CGIAR is monitoring emissions from up to 1,000 points across India and East Africa using public satellite data from space agencies. Changes in emissions indicate changes in economic activity that give researchers important context for understanding how food security challenges are unfolding by location. Equipped with this dynamic, unfolding picture, CGIAR is able to compare with crop and survey data to monitor how that individual crop will impact the broader food supply.
Insights from this data will enable CGIAR to see and increasingly predict how food security challenges are unfolding from the COVID-19 crisis to inform policy makers, food relief actors, and other stakeholders. Using CGIAR’s existing technology, emissions analysis on one point on the Earth could take four to five hours to run. Today, CGIAR can run multiple analyses over multiple points with sufficient frequency to inform timely action on food security.
“At HPE, our purpose is to advance the way people live and work, and we are committed to applying technology to help address some of society’s toughest challenges,” said Janice Zdankus, VP, Innovation for Social Impact, HPE. “One of our focus areas is world hunger, inspired by results from Purdue University’s 1,400-acre research farm and its application of precision agriculture to increase crop yields while drastically conserving resources. With CGIAR, we saw the opportunity to apply innovative technologies, like HPE’s Memory-Driven Computing Sandbox to drive faster insights and help address this incredibly complex challenge.”
While the pandemic has caused immediate and near-term issues that must be addressed, the future of food security must be evaluated on a longer horizon as well. Mapping and predicting climate risk, vulnerability, and adaptation options are top priorities for CGIAR.
“Building monitoring and modeling capabilities is critical,” said King. “The whole world was caught flat footed during the pandemic because we found that there were huge gaps in timely, good quality data to monitor and respond quickly to the myriad – and very different – food system disruptions unfolding as a result of the COVID crisis. The global community of food security actors has begun to build up capabilities for more timely, localized diagnosis and response to food security challenges, and complement these with mapping and predicting risks and vulnerabilities of potential climate shocks to food security on a longer time horizon. We will be able to highlight the best options for vulnerable farmers in those areas to adapt to changing conditions and help equip them for that before the next crisis arises.”
Recommended AI News: Planful Announces Summer20 Product Release, Expands Collaboration Capabilities For Continuous Planning In All Areas Of The Business
Comments are closed, but trackbacks and pingbacks are open.