Artificial Intelligence | News | Insights | AiThority
[bsfp-cryptocurrency style=”widget-18″ align=”marquee” columns=”6″ coins=”selected” coins-count=”6″ coins-selected=”BTC,ETH,XRP,LTC,EOS,ADA,XLM,NEO,LTC,EOS,XEM,DASH,USDT,BNB,QTUM,XVG,ONT,ZEC,STEEM” currency=”USD” title=”Cryptocurrency Widget” show_title=”0″ icon=”” scheme=”light” bs-show-desktop=”1″ bs-show-tablet=”1″ bs-show-phone=”1″ custom-css-class=”” custom-id=”” css=”.vc_custom_1523079266073{margin-bottom: 0px !important;padding-top: 0px !important;padding-bottom: 0px !important;}”]

AR Glasses Have the Potential to Replace the Smartphone Within 10-15 Years from Now.

 Augmented Reality (AR) glasses are expected to become the next big thing in infotainment. They will allow us to overlay virtual objects on top of our regular environment, and experience these objects as if they were real. AR glasses will enable exciting new applications, and will dramatically impact the way we interact and communicate with each other. But users will only accept them if they are unobtrusive and ‘working perfectly’. And this drives today’s technology development. Soeren Steudel, the principal scientist at imec, discusses the trends in infotainment, how they translate into technology and how they might impact our lives in 2035.

In the year 2035, three designers collaborating on an art project will gather in the gallery where they will soon release their newest creation. They all wear stylish Augmented Reality (AR) glasses allowing them to virtually overlay the latest mock-up of their art object on the real gallery environment. They can even touch the virtual object, manipulate it and change its shape with their hands. All three of them can evaluate – in real time – the impact of the manipulations from their point of view. When they eventually agree on the object’s final shape and color, they send their creation to a 3D printer to have the first prototype of their artwork. 

Read More: USA TODAY NETWORK Celebrates 50th Anniversary of Apollo 11 Moon Landing With Augmented Reality

Towards Increased Natural Human Experience

A scenario like this builds on the big trends that we see in infotainment and on how those translate into new technologies. Infotainment can be described as the way we interact with electronics on a personal level, in numerous domains such as industry, healthcare, entertainment, education, communication, etc. Today, dominant designs in infotainment systems are for example digital cinema, the (connected) tv, ‘Alexa’ audio home control systems, the pc, gaming consoles, and smartphones. In this sequence, they answer an ongoing trend towards ever more mobility, and hence more energy constraints. But they all have one thing in common: they interface with human beings using only a limited number of human senses – being sight, hearing and, to a limited extent, touch.

Ar Glasses Have the Potential to Replace the Smartphone Within 10-15 Years from Now.

Trends in Infotainment – an imec view

In the future, this number of human senses will definitely increase. Future infotainment systems will allow us to experience the virtual world as if it were the real world. Designed to be unobtrusive, the electronics will allow us to interact intuitively with virtual objects – thereby gradually using all our senses, including smell, taste, proprioception (the sense through which we perceive the movement and position of our body) and sense of balance. And this drives the development of the next-generation infotainment platforms. As a first step, we have already witnessed the emergence of Virtual Reality (VR), where fully closed headsets take us into a fully simulated world. Virtual Reality is however merely confined to niche activities such as gaming.

Overlaying Virtual Objects

The next big thing will be AR glasses, allowing us to enhance our perception of the real world. AR glasses will overlay contextual information and/or virtual objects on top of the real world. The system will interface with human beings in an unobtrusive way, using senses such as sight, hearing, touch, smell, and taste. AR glasses will create tremendous possibilities in areas such as industry (e.g. to assist in product design), art, entertainment, and healthcare (e.g. to assist the surgeon during surgery), and in the way we communicate and collaborate with each other.

This video of the imec.icon project ARIA illustrates the potential of AR-based systems for industrial maintenance.

We can expect that within 10-15 years, this vision will become a reality. First AR glasses are already emerging. In the following years, their performance specifications will be gradually improved to become true AR products. They have the potential to become a new platform competing against the mobile phone, at some point even replacing it. But users will only accept the new technology if all technology challenges will have been solved and the product is ‘working perfectly’. And if AR glasses will have evolved from the bulky goggles – as in today’s preliminary applications – to lightweight and stylish implementations.

Read MoreLive Nation Unveils Augmented Reality Products Elevating The Fan Experience

From Sensors and Actuators to Self-Learning Systems

To trigger all human senses, we need innovations in low-power sensors and actuators. Finding solutions for senses such as sight and hearing seems relatively simple: an actuator for sight is a display, a sensor is a camera; for hearing, we can make use of loudspeakers and microphones. At imec, for example, we are scaling down our micro-OLED platform to enable very high-resolution displays. We also work on eye-tracking technology that will enable an enhanced AR experience. And we work on haptic feedback solutions to enable touch and create push backs in 3D. Developing actuators for senses like taste, smell, proprioception (i.e., how can you manipulate your feeling of strain?), and sense of balance remains, however, a huge challenge. One future option is to use directed ultrasound to stimulate nerves in our brain or vertebrae, or to trigger these senses by directed implants.

AR glasses have the potential to replace the smartphone within 10-15 years from now.”

Related Posts
1 of 658

Imec develops eye-tracking solutions to improve AR and VR experiences.

We will need innovations both in hardware and software. The ability of AR systems to provide 3D visual information overlay will require low-power image recognition and data extraction solutions, at the lowest possible latency. With these solutions, AR glasses will, for example, be able to quickly visualize where you can find a bakery in the street you are walking in and to display the types of bread that are available in the shop.

This will drive computation requirements and data rates far beyond what can be achieved today. To give an example, 3D high-resolution video image overlay may require data rates of about 1TB/s – 10TB/s. We will also need sensor fusion and machine learning tools, both on the glasses and in the cloud.

To minimize information overload for the user, we need self-learning systems that know which information is relevant for their user and what is not.

And at all levels of technology development, a dramatic increase in power efficiency will be required to guarantee a long-lasting battery autonomy. Last but not least, the user will only accept this new technology if AR glasses can be made lightweight, stylish, unobtrusive and comfortable, and provide a natural image to the eye.

Read MoreFDA Clears Medivis’ Revolutionary Augmented Reality Surgical System

Beyond AR Glasses

Looking further into the future, say 15-25 years from now, we will gradually move towards mobile holographic projection. With holo-projection, everyone in the room will be able to visually experience 3D virtual objects, but without wearing glasses. These holographic projectors might be complemented with directed sound projection to actuate hearing, and with haptic feedback, solutions to trigger touch.

And far beyond 2035, the next wave might be direct brain-to-computer interfaces.

Human senses will be triggered by directly stimulating certain areas of the brain. In the first phase, this could be done by non-invasive technologies such as EEG systems or ultrasound stimulation. In the next phase, we could think of brain implants. People already work hard to realize this vision, referring to e.g. Elon Musk’s company Neuralink. Without any doubt, brain-to-computer interfacing will create endless possibilities and useful applications, for example in a medical or educational context. But let’s leave it aside if people would welcome such a technology in their everyday life…

How Is Imec Contributing to This Future?

Imec is actively contributing to this future vision with the development of a broad range of technology building blocks.

On the actuator side, imec is developing semi-transparent AM(O)LED displays, and haptic feedback solutions to address touch. On the sensor side, various solutions are being developed, including radar, lidar, sonar, imagers, EEG systems, and chemical sensors. More specifically, in 2018, imec achieved breakthroughs in radar technology and developed solutions for high-speed snapscan and shortwave infrared range hyperspectral imaging.

Imec also works on algorithms and software for sensor fusion, 3D scene mapping, object detection, and machine learning. In 2018, a breakthrough was announced in eye-tracking technology, developed to enable high-quality AR/VR experiences.

Read More: Augmented Reality Comes to the L.A. Times Festival of Books

Imec and Holst Centre have also proposed a prototype of an EEG headset that can measure emotions and cognitive processes in the brain. Besides, imec contributes to activities in high-bandwidth communication, neuromorphic IC development, and energy management. Find more info on displaysimage sensors and sensor fusionwireless communicationradar systems, and data science on imec’s website.

 

10 Comments
  1. […] industry is about to disrupt everything from sports and entertainment to healthcare and real estate. The Business Brainstorm podcast recently caught up with Chris O’Dowd, founder of the simulated […]

  2. […] is poised to disrupt everything from sports and entertainment to healthcare and real estate. The Business Brainstorm podcast recently caught up with Chris O’Dowd-founder of simulated […]

  3. […] is poised to disrupt everything from sports and entertainment to healthcare and real estate. The Business Brainstorm podcast recently caught up with Chris O’Dowd-founder of simulated […]

  4. […] is poised to disrupt everything from sports and entertainment to healthcare and real estate. The Business Brainstorm podcast recently caught up with Chris O’Dowd-founder of simulated […]

  5. […] is poised to disrupt everything from sports and entertainment to healthcare and real estate. The Business Brainstorm podcast recently caught up with Chris O’Dowd-founder of simulated […]

  6. […] para revolucionar todo, desde deportes y entretenimiento hasta atención médica y bienes raíces. El podcast Business Brainstorm se puso al día con Chris O’Dowd, fundador de la plataforma de […]

  7. […] to disrupt every little thing from sports activities and leisure to healthcare and actual property. The Enterprise Brainstorm podcast lately caught up with Chris O’Dowd, the founding father of […]

  8. Bebe Sarışın Sakso Sert sikiş Azgın Nemfoman Yarak delisi Hoş Binicilik.

    1:4:58 1516 Görüntülemeler Derece 93%. Horny Japanese chick Saki Hatsumi, Rei Haruka, Sae Aihara take Amazing Compilation, MILFs JAV
    movie. Derleme Karışık Azgın Japon Jav Milf.

    8:42 1720 Görüntülemeler Derece 92%.

  9. Dicyclomine should start working about 1.5-2 hours after it is administered.
    It is an as-needed medication and it doesn’t lose effectiveness with time so yes it
    should keep working while you are on it. Votes:
    +1 GI GinaMRubdie Thank you.

  10. Copper scrap reprocessing technologies Copper scrap yard prices Metal pricing services
    Copper cable granulation, Metal scrap market forecasting, Scrap copper transaction management

Leave A Reply

Your email address will not be published.