Artificial Intelligence | News | Insights | AiThority
[bsfp-cryptocurrency style=”widget-18″ align=”marquee” columns=”6″ coins=”selected” coins-count=”6″ coins-selected=”BTC,ETH,XRP,LTC,EOS,ADA,XLM,NEO,LTC,EOS,XEM,DASH,USDT,BNB,QTUM,XVG,ONT,ZEC,STEEM” currency=”USD” title=”Cryptocurrency Widget” show_title=”0″ icon=”” scheme=”light” bs-show-desktop=”1″ bs-show-tablet=”1″ bs-show-phone=”1″ custom-css-class=”” custom-id=”” css=”.vc_custom_1523079266073{margin-bottom: 0px !important;padding-top: 0px !important;padding-bottom: 0px !important;}”]

NXP Brings GaN to 5G Multi-Chip Modules for Energy-Efficient Mobile Networks

  • GaN performance in NXP’s multi-chip modules for 5G infrastructure increases efficiency by 8 percentage points
  • Reduces size and weight of radios; accelerates the design and deployment of 5G systems
  • NXP combines multiple technologies to drive optimal performance

NXP Semiconductors N.V. announced a major industry milestone for 5G energy efficiency with the integration of Gallium Nitride (GaN) technology to its multi-chip module platform. Building on the company’s investment in its GaN fab in Arizona, the most advanced fab dedicated to RF power amplifiers in the United States, NXP is the first to announce RF solutions for 5G massive MIMO that combine the high efficiency of GaN with the compactness of multi-chip modules.

Recommended AI News: Gemini Offsets Bitcoin Carbon Emissions, Launches Gemini Green

Reducing energy consumption is a major goal for telecom infrastructure, where every point of efficiency counts. The use of GaN in multi-chip modules increases lineup efficiency to 52% at 2.6 GHz—8 percentage points higher than the company’s previous module generation. And NXP has further improved performance with a proprietary combination of LDMOS and GaN in a single device, delivering 400 MHz of instantaneous bandwidth that makes it possible to design wideband radios with a single power amplifier.

Related Posts
1 of 40,336

This energy efficiency and wideband performance are now available in the small footprint of NXP’s 5G multi-chip modules. The new portfolio will enable RF developers to reduce the size and weight of radio units, helping mobile network operators lower the cost of deploying 5G on cellular towers and rooftops. In a single package, the modules integrate a multi-stage transmit chain, 50-ohm in/out matching networks and a Doherty combiner—and NXP is now adding bias control using its latest SiGe technology. This new step in integration removes the need for a separate analog control IC and provides tighter monitoring and optimization of power amplifier performance.

Recommended AI News: Novarad releases Enterprise-wide, Software-only Version of its CryptoChart Image and Chart Sharing solution

“NXP has developed a unique technology toolbox dedicated to 5G infrastructure that includes proprietary LDMOS, GaN and SiGe, as well as advanced packaging and RF design IP,” said Paul Hart, executive vice president and general manager of the Radio Power Business Line at NXP. “This enables us to leverage the benefits of each element and combine them in the most optimal way for each use case.”

Like the previous module generation, the new devices are pin-to-pin compatible. RF engineers can rapidly scale a single power amplifier design across multiple frequency bands and power levels, reducing design cycle time and accelerating the roll-out of 5G around the globe.

Recommended AI News: Firebolt Ignites Growth With a $127 Million Series B Funding; Empowers Engineers to Deliver Sub-Second Analytics Experiences

Comments are closed.