SensiML Analytics Toolkit Delivers Quick and Easy Anomaly Detection for Industrial Applications
Critical Use of AI for Industrial IoT with Broad Applicability Across Machines and Industries
SensiML Corporation, a leading developer of AI tools for building intelligent IoT endpoints, announced that its SensiML Analytics Toolkit delivers quick and easy development of smart sensors for real-time anomaly detection through intelligent IoT endpoints. This approach addresses a broad spectrum of industrial equipment, processes and industries. By simplifying the development and implementation of anomaly detection devices, SensiML enables companies to focus their scarce and valuable technical resources on application specific functionality, not hand-coded ML and dataset manipulation.
Anomaly detection works by regularly monitoring equipment and constantly measuring key variables such as temperature, vibration, sound, motion, flow, and other time-series sensor data. AI-based analysis is used to establish “normal” and “outlier” behavior. Detected anomalies can then be flagged for immediate intervention or recorded for later analysis. Anomaly detection can be part of a larger Condition Monitoring (CM) or Predictive Maintenance (PdM) program for a company or can be used independently in a more targeted way.
Read More: Dragonchain, Vision Tree & Coiin Team up to Produce Blockchain Documentary Series
The SensiML Analytics Toolkit provides a fast and simple way for industrial companies to implement anomaly detection for their specific machines and processes. For example, using SensiML-generated algorithms, technicians can transform traditional sensors into customizable, machine-specific anomaly detectors during initial machine installation or during a later retrofitting. Some of the new functionality available through the use of these “smart sensors” include:
- Baseline algorithms that can adapt with edge learning to improve insight with use
- Triggered events that can optionally report feature vector results or corresponding raw sensor data
- Simple closed-loop feedback that can involve operators in system tuning as appropriate
Read More: BidSwitch Adopts The Trade Desk’s Unified ID Solution
“These are truly exciting times for industrial IoT innovation. Ubiquitous sensors combined with today’s highly efficient endpoint processors and sophisticated AutoML tools like SensiML now make it practical to instrument virtually all aspects of the smart factory. Complex industrial processes can be now be characterized by their many component subprocesses and analyzed using distributed processing where it makes most sense,” said Chris Rogers, CEO of SensiML. “Through the use of anomaly detection with adaptive smart sensor hardware and our AI Toolkit, developers of sensor modules can offer new innovative solutions that efficiently monitor plant equipment, optimize processes, and lower operating costs to improve the bottom line.”
Read More: UPS Sends Warning Shot to Amazon with its Newly Approved Drone Delivery Fleet, Says GlobalData
Copper scrap recycling solutions Copper recycling partnerships Metal scrap storage
Copper cable scrap export cost, Scrap metal reclaiming and recycling center, Copper scrap value extraction
Scrap metal regenerating solutions Ferrous scrap refinishing Iron alloy recycling
Ferrous metal recovery and reclaiming, Iron waste repurposing, Scrap metal reprocessing
Scrap metal assessment services Ferrous metal industry analysis Iron and steel reclaiming services
Ferrous metal packaging, Iron recycling services, Salvage metal