[bsfp-cryptocurrency style=”widget-18″ align=”marquee” columns=”6″ coins=”selected” coins-count=”6″ coins-selected=”BTC,ETH,XRP,LTC,EOS,ADA,XLM,NEO,LTC,EOS,XEM,DASH,USDT,BNB,QTUM,XVG,ONT,ZEC,STEEM” currency=”USD” title=”Cryptocurrency Widget” show_title=”0″ icon=”” scheme=”light” bs-show-desktop=”1″ bs-show-tablet=”1″ bs-show-phone=”1″ custom-css-class=”” custom-id=”” css=”.vc_custom_1523079266073{margin-bottom: 0px !important;padding-top: 0px !important;padding-bottom: 0px !important;}”]

Ultra-Low On-Resistance 100 V and 200 V Rad-Hard Gallium Nitride (GaN) Power Devices Increase Power Density for Demanding Space Applications

EPC Space expands its radiation-hardened (rad-hard) gallium nitride (GaN) transistor family for critical spaceborne and other high reliability environments.

EPC Space announces the introduction two new rad-hard GaN transistors with ultra-low on-resistance and extremely low gate charge for high power density solutions that are lower cost and more efficient than the nearest comparable radiation-hardened silicon MOSFET. These devices come packaged in hermetic packages in very small footprints. Chip-scale versions of this device are available from EPC.

Latest Aithority Insights: AiThority.com to Attend The Character of AI – A Technology Ethics Conference (Virtual)

“These two new additions to our rad-hard product line offer designers high power, ultra-low on-resistance solutions enabling a generation of power conversion and motor drives in space operating at higher efficiencies, and greater power densities than what is achievable with traditional silicon-based rad-hard solutions”

With higher breakdown strength, lower gate charge, lower switching losses, better thermal conductivity, and lower on-resistance, power devices based on GaN significantly outperform silicon-based devices and enable higher switching frequencies resulting in higher power densities, higher efficiencies, and more compact and lighter weight circuitry for critical spaceborne missions.

AI and ML NewsAI: Continuing the Chase for Brain-Level Efficiency

Applications benefiting from the performance of these products include DC-DC power supplies for satellites and space mission equipment, motor drives for robotics, instrumentation and reaction wheels, deep space probes, and ion thrusters.

“These two new additions to our rad-hard product line offer designers high power, ultra-low on-resistance solutions enabling a generation of power conversion and motor drives in space operating at higher efficiencies, and greater power densities than what is achievable with traditional silicon-based rad-hard solutions,” said Bel Lazar, CEO of EPC Space.

AI ML in Marketing: AI and Big Data Analysis Used to Find Brands’ Emotional Connection

[To share your insights with us, please write to sghosh@martechseries.com]

Comments are closed.