Artificial Intelligence | News | Insights | AiThority
[bsfp-cryptocurrency style=”widget-18″ align=”marquee” columns=”6″ coins=”selected” coins-count=”6″ coins-selected=”BTC,ETH,XRP,LTC,EOS,ADA,XLM,NEO,LTC,EOS,XEM,DASH,USDT,BNB,QTUM,XVG,ONT,ZEC,STEEM” currency=”USD” title=”Cryptocurrency Widget” show_title=”0″ icon=”” scheme=”light” bs-show-desktop=”1″ bs-show-tablet=”1″ bs-show-phone=”1″ custom-css-class=”” custom-id=”” css=”.vc_custom_1523079266073{margin-bottom: 0px !important;padding-top: 0px !important;padding-bottom: 0px !important;}”]

Deci’s New Family of Models Delivers Breakthrough Deep Learning Performance on CPU

Deci, the deep learning company harnessing Artificial Intelligence (AI) to build AI, announced a new set of industry-leading image classification models, dubbed DeciNets, for Intel Cascade Lake CPUs. Deci’s proprietary Automated Neural Architecture Construction (AutoNAC) technology automatically generated the new image classification models that significantly improve all published models and deliver more than 2x improvement in runtime, coupled with improved accuracy, as compared to the most powerful models publicly available such as EfficientNets, developed by Google.

While GPUs have traditionally been the hardware of choice for running convolutional neural networks (CNNs), CPUs, already more commonly utilized for various computing tasks, would serve as a much cheaper alternative. Although it is possible to run deep learning inference on CPUs, generally they are significantly less powerful than GPUs. Consequently, deep learning models typically perform 3-10X slower on a CPU than on a GPU.

Recommended AI News: OpenBlox Partners with TestNet Ventures to Deliver Web3 Interoperable Franchise for Gamers

DeciNets closes the gap significantly between GPU and CPU performance for CNNs. With DeciNets, tasks that previously could not be carried out on a CPU because they were too resource intensive are now possible. Additionally, these tasks will see a marked performance improvement: by leveraging DeciNets, the gap between a model’s inference performance on a GPU versus a CPU is cut in half, without sacrificing the model’s accuracy.

“As deep learning practitioners, our goal is not only to find the most accurate models, but to uncover the most resource-efficient models which work seamlessly in production – this combination of effectiveness and accuracy constitutes the ‘holy grail’ of deep learning,” said Yonatan Geifman, co-founder and CEO of Deci. “AutoNAC creates the best computer vision models to date, and now, the new class of DeciNets can be applied and effectively run AI applications on CPUs.”

Related Posts
1 of 40,506

Recommended AI News: Check Point Software Enhances its Secure Access Service Edge Solution to Securely Connect the Remote and Hybrid Workforce

“There is a commercial, as well as academic desire, to tackle increasingly difficult AI challenges. The result is a rapid increase in the complexity and size of deep neural models that are capable of handling those challenges,” said Prof. Ran El-Yaniv, co-founder and Chief Scientist of Deci and Professor of Computer Science at the Technion – Israel Institute of Technology. “The hardware industry is in a race to develop dedicated AI chips that will provide sufficient compute to run such models; however, with model complexity increasing at a staggering pace, we are approaching the limit of what hardware can support using current chip technology. Deci’s AutoNAC creates powerful models automatically, giving users superior accuracy and inference speed even on low-cost devices, including traditional CPUs.”

In March 2021, Deci and Intel announced a broad strategic collaboration to optimize deep learning inference on Intel Architecture (IA) CPUs. Prior to this, Deci and Intel worked together at MLPerf, where on several popular Intel CPUs, Deci’s AutoNAC technology accelerated the inference speed of the well-known ResNet50 neural network, reducing the submitted models’ latency by a factor of up to 11.8x and increasing throughput by up to 11x.

Recommended AI News: Coinllectibles Successfully Acquires 80% of Grand Gallery For HK$6million

[To share your insights with us, please write to sghosh@martechseries.com]

Comments are closed.