Artificial Intelligence | News | Insights | AiThority
[bsfp-cryptocurrency style=”widget-18″ align=”marquee” columns=”6″ coins=”selected” coins-count=”6″ coins-selected=”BTC,ETH,XRP,LTC,EOS,ADA,XLM,NEO,LTC,EOS,XEM,DASH,USDT,BNB,QTUM,XVG,ONT,ZEC,STEEM” currency=”USD” title=”Cryptocurrency Widget” show_title=”0″ icon=”” scheme=”light” bs-show-desktop=”1″ bs-show-tablet=”1″ bs-show-phone=”1″ custom-css-class=”” custom-id=”” css=”.vc_custom_1523079266073{margin-bottom: 0px !important;padding-top: 0px !important;padding-bottom: 0px !important;}”]

Inkbit Demonstrates Single-Print Fabrication of Complex Multi-Functional Systems and Robots

 

Inkbit, a pioneer in advanced additive manufacturing solutions, announced the publication of a landmark study in the journal Naturedemonstrating the use of its Vision-Controlled Jetting (VCJ) technology to directly manufacture complex multi-functional systems in one print, without assembly of subcomponents. Written in collaboration with MIT and the Soft Robotics Lab at ETH Zurich, the paper, titled “Vision-Controlled Jetting for Composite Systems and Robots,” demonstrates how VCJ opens a new frontier in manufacturing, by expanding our capabilities to recreate synthetically the intricate structure and functionality of natural organisms.

Recommended AI News: Riding on the Generative AI Hype, CDP Needs a New Definition in 2024

AIThority Predictions Series 2024 bannerTraditional manufacturing methods struggle to fabricate systems that mirror the intricate structures and varied material properties found in nature. VCJ rises to this challenge and offers, for the first time, the ability to accurately fabricate complex, multi-functional systems in a single print, without the need to assemble subcomponents.

“Our VCJ technology is a qualitative change in the field of additive manufacturing,” said Davide Marini, CEO, Inkbit. “We are closing the gap between the elegantly sophisticated structures we admire in nature and our ability to replicate them synthetically. This isn’t just a step forward; it’s a leap into a new era of manufacturing.”

Recommended AI News: Google Floats Gen AI Search in 120 Countries With 4 Additional Languages

Related Posts
1 of 40,604

Inkbit’s VCJ technology originated from traditional inkjet 3D printing, and now takes it to a whole new level by integrating an AI-enabled 3D computer vision scanning system that captures the print geometry of each layer in real time. This digital closed-loop feedback control operation eliminates the need for mechanical planarizers and enables printing with slow-cure chemistries that build the polymer chain more precisely. As a result, VCJ can directly print intricate, multi-material parts in a wide range of mechanical properties with accuracy and precision.

The practical applications of this technology are vast. VCJ not only enhances the resolution and functional capabilities of printed components; it also enables fabrication of intricate internal networks of channels and cavities to carry signals, power or fluids through the structure. With VCJ, it is now possible to directly fabricate sophisticated, multi-functional systems capable of performing complex physical tasks at scale. To demonstrate VCJ’s capabilities, the authors of the Nature article printed a variety of complex systems, such as: a tendon-driven hand modeled from MRI data, a pneumatically actuated walking manipulator, a pump mimicking a heart, and novel metamaterial structures.

“With Inkbit’s VJC technology and materials, for the first time, we were able to print something as complex as a robotic hand with bones, ligaments and tendons, mirroring a fully functioning human hand, and do so in one go,” said Thomas Buchner, doctoral student at ETH Zurich. “Inkbit’s TEPU material has very good elastic properties and bounce back to their original state much faster after bending than polyacrylates, making it ideal for producing the robotic hand’s elastic ligaments.”

Recommended AI News: Automate Pricing Processes with Akur8’s New Guidewire Marketplace App

Inkbit’s VCJ technology is poised to revolutionize the way we think about product design and manufacturing, especially in fields that require multi-step assembly processes and complex supply chains. The study published in Nature  marks a significant milestone in additive manufacturing and opens new possibilities in fields like robotics, healthcare, mobility, industrial automation and defense.

[To share your insights with us, please write to sghosh@martechseries.com]

Comments are closed.