[bsfp-cryptocurrency style=”widget-18″ align=”marquee” columns=”6″ coins=”selected” coins-count=”6″ coins-selected=”BTC,ETH,XRP,LTC,EOS,ADA,XLM,NEO,LTC,EOS,XEM,DASH,USDT,BNB,QTUM,XVG,ONT,ZEC,STEEM” currency=”USD” title=”Cryptocurrency Widget” show_title=”0″ icon=”” scheme=”light” bs-show-desktop=”1″ bs-show-tablet=”1″ bs-show-phone=”1″ custom-css-class=”” custom-id=”” css=”.vc_custom_1523079266073{margin-bottom: 0px !important;padding-top: 0px !important;padding-bottom: 0px !important;}”]

Jülich’s Upgraded Supercomputer JUWELS Setting New Benchmarks

Forschungszentrum Jülich’s upgraded supercomputer JUWELS is now capable of 85 petaflops. This is equivalent to 85 quadril-lion computing operations per second or the computing power of more than 300,000 modern PCs. Thanks to its new booster module, JUWELS is able to massively expand the application limits of simulations and also offers the strongest platform in Europe for the use of artificial intelligence (AI).

Recommended AI News: PlaySight Announces Updated Product Portfolio With GO And PRO Sports Video Platforms  

Developed by Forschungszentrum Jülich, Atos, a global leader in digital transformation headquartered in France, the Munich-based supercomputing specialist ParTec, and the accelerated computing platform company NVIDIA, JUWELS is the fast-est computer in Europe. It currently ranks number 7 on the TOP500 list of the world’s fastest computers published today. The Jülich supercomputer financed by the national Gauss Centre for Supercomputing takes third place in the cur-rent Green500 and is the world’s most energy-efficient supercomputer in the highest performance class.

“We see supercomputing not only as the subject of our research, but above all as a powerful tool that helps us to address complex research topics together with our partners from science and industry,” said Prof. Wolfgang Marquardt, Chairman of the Board of Directors of Forschungszentrum Jülich.

“With its fully expanded JUWELS system, Forschungszentrum Jülich provides scien-tists from a wide range of institutions and scientific disciplines with access to super-computing capacities of the highest level. At the same time, however, the system also demonstrates our responsible action with respect to the ever increasing energy demand for the provision of computing power.”

Recommended AI News: Privitar Achieves Microsoft’s Co-Sell Ready Designation And Joins Microsoft Fast Track For ISVs Program

Bridging the gap between simulations and reality

Another current project is the detailed simulation of surface, earth, and groundwater movements. With the new JUWELS booster module, researchers are for the first time able to perform simulations with the required fine resolution, depicting details such as individual slopes or river corridors.“A very recent example in the current COVID-19 crisis is supporting simulations for drug development,” said Prof. Thomas Lippert, head of the Jülich Supercomputing Centre (JSC). “Only the computing power of the booster enables our researchers to simulate the processes before, during and after a potential drug meets a receptor or protein realistically enough.”

Intelligent task sharing – highest energy efficiency

Related Posts
1 of 40,575

JUWELS is based on a highly flexible modular architecture developed by For-schungszentrum Jülich together with European and international partners. “With its powerful, highly efficient graphics processors, the booster module is designed for extremely computationally intensive applications that can be easily processed in par-allel on a large number of computing cores,” said Dr. Dorian Krause, who is respon-sible for setting up and operating the extraordinarily complex system at Jülich. “JUWELS is also the leader in terms of energy efficiency among the top 10 fastest computers in the world.”

JUWELS is one of the first supercomputers worldwide using NVIDIA A100 Tensor Core GPUs, based on the NVIDIA Ampere architecture. The booster unites around 12 million CUDA cores (FP64) across its more than 3,700 graphics processors, con-nected via an NVIDIA Mellanox HDR 200Gb/s InfiniBand high-performance network. The booster alone reaches a peak performance of 73 petaflops. With nearly 2.5 exa-flops of peak AI performance, i.e. 2.5 trillion computing operations per second, it of-fers the strongest platform in Europe for the use of artificial intelligence (AI).

“The key highlight of JUWELS is that both modules – the previous “cluster module”, which works with fast processors (CPUs), and the booster module with its GPUs – are very tightly interconnected,” says Bernhard Frohwitter, CEO of the Munich-based supercomputing specialist ParTec. The interaction of the modules controls ParTec’s modular software system ParaStation Modulo, a world-leading development from Germany. “With ParaStation Modulo, JUWELS can dynamically access CPUs and GPUs within a code at will and thus optimize the calculation.”

“Both modules come from Atos, based on our BullSequana X infrastructure, whose 100% highly-efficient water-cooled patented DLC (Direct Liquid Cooling) solution contributes significantly to the low energy consumption of the system.” explains Agnès Boudot, Senior Vice President, Head of HPC & Quantum at Atos. “Atos’ de-sign ensures that the fullest computational power issued from CPU and GPU blades is translated into users’ applications.”

Recommended AI News: Silvaco Acquires Memory Compiler Technology Of Dolphin Design SAS

Prepared for future technologies

Prof. Thomas Lippert sees the JUWELS system also as a milestone on the path to-wards the European exascale computer, which is set to be launched in 2023. The construction and operation of such a supercomputer is regarded throughout the world as the next major step in supercomputing. With a computing power of at least one exaflops, i.e. 1 trillion double precision floating point operations per second, it would be at least 12 times faster than the JUWELS booster.

“JUWELS’ modular architecture, the design of its computing nodes, its network, in-frastructure, and cooling system as well as its software architecture can be trans-ferred to an exascale computer in the next years, while keeping costs and energy consumption at a reasonable level,” said Thomas Lippert. As far as the future of su-percomputing is concerned, thanks to its modular design, JUWELS is perfectly pre-pared to integrate future technologies being researched at Forschungszentrum Jülich — for example quantum computer modules or neuromorphic modules that work on the model of the human brain.

Recommended AI News: QuoLab Technologies Announces Partnership With QGroup GmbH

1 Comment
  1. Copper scrap cleaning says

    Scrap Copper transport and logistics Copper scrap repurposing methods Urban metal scavenging
    Copper cable inspection, Scrap metal utili, Scrap Copper recycling benefits

Leave A Reply

Your email address will not be published.