ReRAM Proves Resistant To Invasive Attacks
CrossBar’s Resistive RAM Memory Inherently Resistant to Physical Attacks, Vastly Improving Memory Security
CrossBar Inc., a leading non-volatile memory technology provider, announced new applications of its Resistive RAM (ReRAM) technology for use in secure storage and processing, where resistance to reverse engineering and physical attacks are essential requirements of the system.
Latest Aithority Insights : MATRIXX Software and CompaxDigital Join Forces to Drive New Revenue Growth for Emerging 5G Services
While historically utilized as a high-performance, high-density multi-time programmable non-volatile memory, CrossBar’s Resistive RAM technology is now being offered for use in memory applications requiring higher levels of content security.
“The high-tech marketplace is demanding memory products with increased levels of memory security to counter anticipated physical attacks,” said Mark Davis, President and CEO at CrossBar, Inc. “Our filamentary based ReRAM has been demonstrated to provide unique levels of security, including strong resistance to attempts to read our memory through invasive physical hacking.”
“MSI performed extensive delayering and inspection of CrossBar’s ReRAM memory silicon through imaging techniques in an attempt to determine its stored content”, said Michael Strizich, President of MicroNet Solutions, Inc. “After significant evaluation using sophisticated techniques such as measuring electron beam induced current and passive voltage contrast imaging, we were unsuccessful in determining the contents of the memory array”.
Due to its basic structure, CrossBar’s ReRAM cell itself is inherently resistant to physical hacking targeting sensitive information and data stored in memory. It is not feasible to externally read the physical ReRAM cell electrically, magnetically or through imaging techniques even after delamination of the silicon. Also, the ReRAM cell is fabricated vertically, is located between layers of metal, and has a very small cross-sectional area, making it virtually impossible to measure its resistance in attempts to determine its stored contents.
Browse The Complete News About Aithority: Comau Introduces Its N-220-2.7 New Generation Robot To Unlock Higher Performance And Cost-effective…
Compared to oxide based ReRAM, CrossBar’s ReRAM utilizes stochastic electro-chemical ionic movement that is more difficult to analyze or useful for inferring the contents of the ReRAM. The ReRAM-based cell microstructure changes are unclonable, and unlikely to be detected using invasive techniques such as FIB (Focused Ion Beam) or SEM (Scanning Electron Microscopy) or TEM (Transmission Electron Microscopy) sampling. For example, TEM images of two ReRAM cells holding data states of “1” or “0” show no differences in physical appearance between the storage cells. These features make the content generated in the ReRAM memory or physical unclonable function (PUF) physically untraceable.
CrossBar’s ReRAM technology is enabling a new class of computing and storage, addressing the needs of high-performance, high-density memories requiring increased levels of security such as finance and digital asset applications.
Read More About Aithority News : Oriient Announces New Partnership with Google Cloud to Bring Cutting-Edge Micro-Location Services to…
[To share your insights with us, please write to sghosh@martechseries.com]
Comments are closed.